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Curvature particle pinch in tokamak and stellarator geometry

Alexey Mishchenko,a) Per Helander, and Yuriy Turkin
Max-Planck-Institut fiir Plasmaphysik, EURATOM-Association, D-17491 Greifswald, Germany

(Received 19 June 2007; accepted 23 August 2007; published online 16 October 2007)

A study of the curvature pinch effect in various fusion devices (both tokamaks and stellarators) is
presented. Canonical density profiles are calculated employing the theory developed by M. B.
Isichenko, A. V. Gruzinov, P. H. Diamond, and P. N. Yushmanov [Phys. Plasmas 3, 1916 (1995)].
In tokamaks, it is found that the curvature pinch is relatively strong (especially in a spherical
tokamak) and usually leads to a peaked density profile. In stellarators, the curvature pinch is weaker
and can have either sign. © 2007 American Institute of Physics. [DOL: 10.1063/1.2789988]

I. INTRODUCTION

The density profile is usually peaked in tokamaks. To
explain this peaking in the absence of particle sources in the
plasma core, the existence of an inward particle pinch (con-
vective flux not directly associated with a density gradient) is
often invoked. In neoclassical theory, such an inward pinch
effect appears as an off-diagonal flux proportional to the to-
roidal loop voltage (the so-called Ware pinch, see Ref. 1).
This neoclassical pinch effect is typically too small to ex-
plain the experimental observations, although it can be made
stronger by artificially enhancing the electron-electron colli-
sion frequency.2 Also, turbulent mechanisms can drive
anomalous pinches. Thus, so-called thermodiffusion (see
Refs. 3-5) driven by microinstabilities in a fusion plasma
can lead to an inward particle flux proportional to the tem-
perature gradient. However, this mechanism may not be
strong enough to explain the experimentally observed den-
sity peaking (see Ref. 6).

Another anomalous mechanism, labeled “turbulent equi-
partition,” has been suggested (see Ref. 7). This mechanism
is associated with the adiabatic invariance of trapped electron
motion. The basic physical argument is that collisionless
trapped electrons experience anomalous transport through in-
teraction with electrostatic turbulence while conserving the
second adiabatic invariant constant (assuming that the char-
acteristic frequencies of the turbulence are much smaller than
the electron bounce frequency). Under such conditions, the
trapped electrons that gain energy from the wave must move
inwards (in a tokamak) and are adiabatically compressed to
give peaked profiles. This mechanism has been called the
curvature pinch effect™ (another name is turbulent equipar-
tition pinch).

Curvature pinch has been addressed in tokamak geom-
etry using the large-aspect-ratio approximation8 within a
phenomenological description of turbulent diffusion. Results
valid in general tokamak geometry have also been obtained.’
Curvature pinch has been calculated more quantitatively in a
tokamak using quasilinear theory.3’4’10 In stellarators, there is
experimental evidence of anomalous pinches, t0o."" In Ref.
12, the possibility of a negative anomalous particle flux in a
stellarator has been found numerically. There is clearly a
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need to gain more physical insight into the basic mechanisms
that can drive stellarator pinches.

In this paper, we point out that the theory of Ref. 8
applies to stellarators as well as tokamaks, and we study the
curvature pinch in various fusion devices, both existing and
planned ones. We compute the so-called “canonical density”
profile driven by curvature pinch (see Sec. II for details). The
results of the computations employing true geometry are
compared with the corresponding large-aspect-ratio approxi-
mation.

The paper is organized as follows. In Sec. II, we describe
briefly the theory underlying our calculations and present the
numerical tool that is used to calculate the canonical density
in various devices. In Sec. III, we discuss the results of our
calculations in a tokamak geometry, while calculations for
stellarators are presented in Sec. I'V. The final discussion and
conclusions are given in Sec. V.

Il. BASIC THEORY OF THE CURVATURE PINCH

In this section, our presentation and notation closely fol-
low Ref. 8. If the electron bounce frequency is larger than
the turbulence correlation frequency, w,> w, the single-
particle motion can be averaged before introducing the ki-
netic description. Using the Clebsch coordinates ¢ (poloidal
magnetic flux) and « (corresponding angle) defined locally
for a general magnetic field B(x)=Va X Vy/(2m), one can
write the equations of bounce-averaged guiding center mo-
tion in the canonical Hamiltonian form,

w&(ﬁ%) aﬁ(ﬂ%) 0
e \ da Jda e \ JY oy

Here ¢ is the fluctuating part of the bounce-averaged elec-
trostatic potential (turbulence) and HO:(mvﬁ/ 2+ uB+edy),
is the bounced-averaged unperturbed particle Hamiltonian
function, with ¢, being the background electric field.

These equations can be interpreted as Langevin equa-
tions with the stochastic part coming from the turbulence.
According to the theory of stochastic processes, these Lange-
vin equations for the particle motion can equivalently be
rewritten as the Fokker-Planck equation for the particle dis-
tribution function,

© 2007 American Institute of Physics
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where the derivatives are taken at constant values of the first
and second adiabatic invariants, u=v" /(2B) and J=$vdl.
Note that the collision integral C(f) has been included in Eq.
(2). One can further reduce the description of the system by
averaging over a [which annihilates all terms of the type
dp(-+*)]. Thus, the reduced Fokker-Planck equation takes the
form

L Pam= ANt DD+ D O

Note that in addition to a pure diffusion in the ¢ space (as is
the case in the theory developed in Ref. 8), a drift term
appears in Eq. (3). This term matters only in nonaxisymmet-
ric configurations [otherwise the drift coefficient AY
=(2mcle)d,H, vanishes].

Formally, one seeks the solution of Eq. (3) by successive
approximations in the smallness of D*¥ (turbulence energy is
smaller than thermal energy) and AY (neoclassical ordering).
The zeroth-order solution follows from the condition C(f;)
=0 and is given by the expression

n() { MMB}

“TWw (4)

fO(‘p’Iu"B) = |

———¢x
N2mmT (1)) P

where B=(e-ed)/(mu) is the maximal magnetic field on a
flux surface which is available for an electron with energy
e=mv?/2+e¢, and magnetic moment ,u;vi/(ZB).

In first order, Eq. (3) can be written as follows:

)= fAY ) 0+ (CU D) a+ IfDY4f0) o

neoclassical

anomalous (5)

The first two terms in Eq. (5) lead to neoclassical fluxes
(their effect should be relatively small in a tokamak). The
last term corresponds to anomalous diffusion and pinch.
We can construct an equation for the density moment
integrated over the flux surface, using the relation

1 1
<J d3vF>=W2 Jd,udJFU+ 7<JdeJF> ,

passing particles

trapped particles (6)

where (...) is the flux-surface average, (---),=$da(---) cor-
responds to the average over the toroidal angle, V'=dV/dy
is the derivative of the magnetic volume inside the flux sur-
face, and o==+1 corresponds to the direction of the parallel
velocity of a passing particle. For passing particles, we de-
fine J=V'(2mB|v,|). For trapped particles, J=$v,dl, where
the integral is taken along the magnetic field line between the
bounce points (forth and back). The magnetic moment is u
=v> /(2B).
The resulting continuity equation takes the form
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&tNe == az//(rneo + 1_‘zmom) s (7)

where N,=V' [ f,d’v is the per-unit-flux density, T, is the
neoclassical particle flux which results from the first two
terms in Eq. (5), and the anomalous flux is given by the
expression

Lapom=- <f d/.LdJD(WI(ﬁwa)> . (8)

In Eq. (8), only the trapped-electron anomalous flux is in-
cluded (see the comment on passing electrons below). Fol-
lowing Ref. 8, we introduce the bounce-invariant pitch-angle
variable j=J/\u=[dl\(B—B)/2 and expand the u depen-
dence of the turbulent-diffusion coefficient in a Taylor series,

o

wa(ﬂ’j’ l/l, a) = 2 Dl(i, l,//, a),LLl/l' . (9)
1=0

Taking the derivative of the zero-order distribution function
Eq. (4) with respect to ¢ at constant j and w, one can rewrite
the anomalous flux as follows:

S+ D (FDdj( T
1_‘anom‘_‘_ E \/’" 13/2 —1|2n
-0 V82Nt Jy BT\B

olnT dln B
- (I+312)——
Y

curvature pinch

dlnn

+
44 oy

diffusion  thermodiffusion @

(10)

This equation is valid in stellarators as well as in tokamaks.
One sees that different contributions to the anomalous flux
include diffusion driven by the density gradient, thermodif-
fusion driven by the temperature gradient, and curvature
pinch, which is an effect of magnetic geometry. In contrast
with Vn and VT, the magnetic geometry is not a thermody-
namic force and the corresponding flux is not constrained by
Onsager symmetry. Note that as a result of the curvature
pinch, the plasma relaxes toward some profiles n.,,(#) and
T (1) (called “canonical profiles” in this context) instead of
flat profiles, which would result from fluxes proportional to
the temperature and density gradients only. In Ref. 10, it is
shown that the true thermodynamic forces that have to be
used in the transport calculation are the gradients of the den-
sity and temperature normalized to their canonical values. It
has been shown that for such a formulation, Onsager sym-
metry holds (at least in the quasilinear approximation) and
the corresponding transport matrix is consistent with the sec-
ond principle of thermodynamics (positivity of the entropy
production rate).

Here, we study the curvature pinch using the canonical
density profile as its main characteristics. This is determined
by the magnetic configuration only, so that we can compare
curvature pinches in various fusion devices (tokamaks as
well as stellarators). Following Ref. 8, we truncate the series
Eq. (10) at zero order /=0. Then, the anomalous particle flux
takes the form
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=—D—+Vn,
anom dl//

where the anomalous diffusion coefficient and the pinch ve-
locity are given by the expressions

A 1
D(y) = —§< f de()B‘3’2> ,
\ a

. 3
V() = —_< J djDoB23,1n B> .
28 o

The canonical density results from the condition I'y,,,,=0
and can be written as follows:

(12)

v
ncan(¢)=n(0)exp f ‘f(_w)dlp . (13)
(¥)

0D

The form of the canonical profile defines if the direction of
the pinch is inward (peaked canonical profile dn,,/d¥>0)
or outward (hollow canonical profile dn,,/d¥<0).

In Ref. 8, a simplified assumption for the turbulent dif-
fusion coefficient was made,

Dy(j. ) = OLj() = j1Do(¥), (14)

where O(x) is the Heaviside function and the quantity
Je()=j(, Bpay) = A1\ (Bpax—B) /2 defines the boundary be-
tween the trapped and passing electrons on a given flux sur-
face [Bpa (1) is the maximal magnetic field on the surface
]. The assumption Eq. (14) implies that all trapped elec-
trons react on the turbulence in the same way, whereas pass-
ing electrons are not included in the consideration. The basic
physical argument is as follows. The passing electrons are
assumed to have, on average, a weaker interaction with the
electrostatic turbulence since they have no turning points and
instead average over all phases of the waves as they com-
plete multiple circuits around the torus. The intention of this
paper is to study the canonical density profile driven by the
curvature pinch (recall that this profile corresponds to the
case in which the diffusion is exactly balanced by the pinch).
However, this mechanism acts neither on the ions nor on the
impurities (whose second adiabatic invariant is not con-
served by the turbulence). Thus, anomalous transport of the
trapped electrons is the dominant factor that determines the
canonical density profile, whereas passing electrons, ions,
and impurities adjust their transport to follow and ensure
ambipolarity. Of course, one may raise various objections
against these arguments. However, it is not the intention of
the present paper to delve into this issue further, but simply
to accept this approximation as reasonable enough (follow-
ing Refs. 7-9) and instead explore how its consequences
depend on the magnetic geometry.

Employing Eq. (14) for the particle diffusion coefficient
Dy(j, ), one can explicitly calculate the integrals appearing
in Eq. (12). The canonical density resulting from this calcu-
lation can be written as follows:

Phys. Plasmas 14, 102308 (2007)

Nean(p) = 1o €Xp fl’ dp[— © 4 (—5’13/2)
can 4
0 lel/Z dp L

3 1 dB I
——”““(1—ﬂ>} . (15)
L

42
2 Bmax dp

Here, we use the quantity p= Vs as the flux surface label with

s=x/x, being the normalized toroidal flux through given

flux surface (y is the toroidal flux on a given flux surface, Y,

is the toroidal flux on the edge). Also, we have introduced

the following notations:

11/2(p) = <\’1 - B/Bmax>s

IS/z(P) = <(1 - B/Bmax)3/2>’ (16)
23V
Vi(p) = 5

with () being the flux-surface average. Other quantities are
the rotational transform «(p)=d¢/dy (¢ is the poloidal flux),
maximal magnetic field on a given flux surface B,,,(p), and
the volume inside the flux surface V(p). Note that Eq. (15)
includes only flux functions and can be used in tokamaks as
well as in stellarators.

The derivative V"(p) appears in the first term of Eq. (15).
We shall see that this quantity is important for the form of
the canonical density profile. Thus, configurations with a
magnetic well (V"> 0) tend to have peaked canonical density
profiles whereas configuration with a magnetic hill (V" <0)
may have hollow profiles. Note also that diamagnetic effects
due to finite beta may influence the density profile [affecting
both V" and the maximal magnetic field on a flux surface
Bax(p)]. Flux-surface shaping and effects of 3D geometry
enter into the canonical density profile through the quantities
Iy and L.

For a large-aspect-ratio tokamak with unshifted circular
flux surfaces, one can simplify Eq. (15). In this case, the
magnetic field strength can be written as follows:

2

B(p):BO{l—ipcos0+O<r—a2>}, pel0:1], (17)
Ry Ry

with R, the major radius, r, the minor radius, and p=r/r,.
Substituting this expression into Eq. (15), one can derive the
large-aspect-ratio limit for the canonical density,

4r, (P (dIng 3 r:
no(p) = ny(0)| 1 - f dp( + —) + (’)(—2) .
3RyJ, "\dlnp 8 R’

(18)

This result is sometimes used in fluid turbulence simulations
of particle transport (see Refs. 3, 10, and 13), although it
tends to overestimate the curvature pinch, as we shall see. In
fact, Eq. (18) can lead to negative densities, if the magnetic
shear is large. Thus, it is more reasonable to define the large-
aspect-ratio limit for the canonical density as follows:
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FIG. 1. (Color online) ITER (inverse aspect ratio €=~ 0.38). Left: Rotational transform ¢, normalized flux derivative of the magnetic volume (V'=dV/dy,
where ¢ is the poloidal flux), normalized maximal magnetic field on a surface B,,,, as functions of p=+y/x, with x being toroidal flux. Right: Canonical
density computed using Eq. (15) (solid line) vs large-aspect-ratio limit given by Eq. (19) (dashed line).

4r, (?  (dIlng 3 r
ny(p) = no(0)exp| - IR dp dinp YA o %)
0Jo 0

(19)

To compute the flux-surface averages appearing in Eq.
(15), we use the equilibrium code package MCONF (standing
for Magnetic CONFiguration). The main purpose of this
package is to provide a fast and convenient tool for coordi-
nate transformations between Boozer magnetic coordinates
and real space coordinates. Furthermore, MCONF calculates
various information about the magnetic configuration of a
stellarator or a tokamak, such as the magnetic field, the Jaco-
bian, rotational transform (¢), trapped particle fraction, mini-
mum and maximum magnetic field on a flux surface, the
volume inside each flux surface, etc.

MAST
3.5 T ;
o
3r 5
- 1(9) .‘.:.
2.5r === Vi(p)/V'(0) i B
. Bmax(p)/Bmax(O) .'. .0'

2t : R
1.5+ - ...oo' "'¢o

; ’.Nt.:;.---"'f—-

lll. TOKAMAK RESULTS

ITER (International Thermonuclear Experimental
Reactor'). The canonical density profile for ITER has been
calculated in Ref. 9, which provides a useful benchmark on
our numerical tool. Note that the strength of the curvature
pinch is much weaker than one would expect from the large-
aspect-ratio approximation (see Fig. 1).

MAST (Mega-Ampere Spherical Tokamak, " operated at
Culham, UKAEA). This configuration is of particular inter-
est in this context because the canonical density driven by
the diffusion of trapped electrons [see Eq. (15)] is an effect
of order e=r,/ R, which should be of order unity in a spheri-
cal tokamak (in MAST e~ 0.68). In Fig. 2, one sees that the
density profile is indeed much more peaked than in ITER
(which implies a stronger curvature pinch). The large-aspect-

MAST

— exact %
L . .
03 |ees LAR |
02 . | . .
0 0.2 0.4 0.6 0.8 1
p

FIG. 2. (Color online) MAST (inverse aspect ratio €=~ 0.68). Curves as in Fig. 1.
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FIG. 3. (Color online) NSTX (inverse aspect ratio e=~0.6). Curves as in Fig. 1.

ratio approximation Eq. (19) cannot be used as it overesti-
mates the strength of the pinch. The canonical density even
becomes negative if Eq. (18) is used (MAST has very high
magnetic shear at the plasma edge).

NSTX (National Spherical Torus Experiment,16 Prince-
ton). In Fig. 3, one can see that, in contrast with other toka-
maks, the canonical density profile corresponding to this
configuration is nonmonotonic and shows off-axis peaking.
The reason is that the case considered here is characterized
by high pressure and a large pressure gradient, which lead to
the appearance of a magnetic well off-axis (at p=~0.5) and a
magnetic hill in the center (p=0). We have here an example
of a finite-beta effect on the curvature pinch in a tokamak. In
the following, we will see that there are finite-beta effects on
the curvature pinch in stellarators, too. It is not surprising
that the large-aspect-ratio approximation Eq. (19) leads to a
qualitatively wrong form of the canonical density profile.

NCSX
1.3 : .
1.2 ...-"° !
1.1F .........oo.o "
flamaziezee
0.9 -
0.8 ~"~.,:
0.71 - l(f)) , : .".Q :
=== V'(p)/V'(0) %,
06l , Bpax(P)V/Brax(©) L
0.5'_/ ; :
94y 02 04 06 08 1
p

Nean(P)

IV. STELLARATOR RESULTS

NCSX (National Compact Stellarator Experiment,17 un-
der construction in Princeton). This quasi-axisymmetric stel-
larator exhibits a hollow canonical density profile (see Fig.
4), corresponding to an outward curvature pinch, which is in
contrast to the inward curvature pinch observed in tokamak
configurations. One can see that the curvature pinch is rela-
tively weak, but still stronger than that in other stellarator
devices; see below. This is caused by the relatively small
aspect ratio of NCSX. Note that the “equivalent tokamak” (a
circular tokamak with the same aspect ratio and rotational
transform as the stellarator) would have a nearly flat (slightly
peaked) canonical density profile (see Fig. 4). Thus, the ap-
pearance of a hollow profile cannot be explained by the stel-
larator shear reversal only but incorporates the effects of
flux-surface shaping and 3D geometry, too.

NCSX
1.1 : .

1.05

0.95 ! ! ; ‘

FIG. 4. (Color online) NCSX (inverse aspect ratio e=~0.22). Curves as in Fig. 1.



102308-6 Mishchenko, Helander, and Turkin

LHD (3.75 m)

1.6 T

— p)
=== V'(p)/V'(0) : :
o Brax(P)/Bay(0)

T

1.4

0.2 : : ' :

Phys. Plasmas 14, 102308 (2007)

LHD (3.75 m)
1.1 T T T

1.08f -

— exact : !
106 .. LAR : : 7

g 1.04

can

< 1.02}

0.98}

0.96 : ! ) ‘

FIG. 5. (Color online) LHD (inward-shifted configuration with position of magnetic axis R,,=3.75 m, inverse aspect ratio e=~0.15). Curves as in Fig. 1.

LHD (Large Helical Device operated at NIFS, Japan;
see Ref. 18). One of the attractive characteristics of LHD is
that different configurations can be realized by changing coil
currents. These configurations can be characterized by the
position of the vacuum magnetic axis. In typical LHD plas-
mas (standard inward shifted configuration with R,
=3.75 m), the experimentally observed density has a hollow
profile (see Ref. 11) whereas the density profiles tend to be
flat' in a configuration with R, =3.53 m, which is the neo-
classically optimized configuration (see Ref. 19). This effect
has been addressed in Ref. 12, where the existence of both
positive and negative anomalous particle fluxes was obtained
depending on the choice of parameters.

In Fig. 5, we consider the curvature pinch effect in the
standard inward shifted configuration (R, =3.75 m). This
configuration shows a nearly flat density profile. The hollow
profiles observed in this configuration experimentally can be

attributed to neoclassical fluxes as stated in Refs. 11 and 12.
The neoclassically optimized configuration (R, =3.53 m)
has a canonical density profile that is peaked in the center
and hollow at the edge (see Fig. 6). Thus, an inward curva-
ture pinch becomes effective only for particles with p<0.7.

Note that this feature may have a positive influence on
impurity transport. In Ref. 13, it was concluded on the basis
of a fluid model that impurity ions respond to the curvature
pinch in much the same way as do the bulk ions. Thus,
impurities accumulate in the center of the device if the cur-
vature pinch is inward for all radial positions (as is usually
the case in a tokamak). In the case shown in Fig. 6, however,
impurities have to penetrate well inside the device due to
some additional mechanism before they are pushed further
inwards by the curvature pinch. Thus, the curvature pinch
could perhaps prevent impurity accumulation in the center
while still allowing density peaking in stellarators. This is in

LHD (3.53 m)
1.1 T T

— exact
=== LAR

LHD (3.53 m)
1.4 ; : , , -
1.2r .Oooo‘o‘.... :
1 :'::f::._

08— 1(p)

=== V(p)/V'(0) .2
06| * Bmax(P)/Bryax(0) _ ”~,
045 02 04 06 08 1

p

FIG. 6. (Color online) LHD (neoclassically optimized configuration with position of magnetic axis R,,=3.53 m, inverse aspect ratio €=~0.17). Curves as in

Fig. 1.
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W7-AS (standard)
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FIG. 7. (Color online) W7-AS (standard configuration, inverse aspect ratio e=0.09). Curves as in Fig. 1.

contrast with the tokamak case, where the curvature pinch is
always a driving factor for the impurity accumulation in the
plasma core (see Ref. 13).

W7-AS. Next, we consider the stellarator Wendelstein
7-AS (see Ref. 20), which was operated in Garching, Ger-
many. This stellarator has been partially optimized (strong
reduction of Pfirsch-Schliiter current). In Fig. 7, we plot the
canonical density corresponding to the so-called standard
configuration (low B, t=1/3). One sees that the density is
slightly peaked but the curvature pinch is very weak (which
can be explained by the very low shear and large aspect ratio
of the device). Note that, as usual, the density profile corre-
sponding to the “equivalent tokamak™ [i.e., computed using
Eq. (19)] deviates considerably from the actual canonical
density profile [computed using Eq. (15)], which again dem-
onstrates the role of the flux-surface shaping and 3D geom-

W7-AS (high beta)
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etry in the formation of the canonical density profile in stel-
larators.

In Fig. 8, the canonical density corresponding to the
W7-AS configuration with 8=0.0165 is plotted. One can see
that a magnetic well appears as a finite-beta effect. The den-
sity profile becomes hollow (5% density increase on the
edge), which indicates an outward curvature pinch. Note that
the pinch is now stronger than in the previous (low-beta)
case. Thus, finite-beta effects may influence the strength of
the curvature pinch and even change its direction.

W7-X. The last device to be considered is the fully op-
timized stellarator Wendelstein 7-X (under construction in
Greifswald, see Ref. 21). In Fig. 9, the so-called standard
(low-beta) configuration is studied. One sees that the density
is nearly flat (slightly hollow). The curvature pinch becomes
much stronger in the case of the high-beta configuration (see

W?7-AS (high beta)
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FIG. 8. (Color online) W7-AS (finite-beta configuration, inverse aspect ratio e=~0.09). Curves as in Fig. 1.
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FIG. 9. (Color online) W7-X (standard configuration, inverse aspect ratio €é=0.09). Curves as in Fig. 1.

Fig. 10, where B=0.0448). The resulting canonical density
profile is hollow (as in the high-beta W7-AS), which may
inhibit the impurity accumulation in the core plasma.

V. CONCLUSIONS

In this paper, we have shown that curvature pinch affects
both tokamaks and stellarators. This pinch effect can be char-
acterized by the corresponding canonical density profile,
which has been computed for various fusion devices.

Curvature pinch is usually inward in tokamak geometry
and its strength is proportional to the inverse aspect ratio.
The effect is therefore much larger in a spherical tokamak
such as MAST than in ITER. An especially interesting result
is obtained from NSTX, where the canonical density profile
is nonmonotonic and exhibits off-axis peaking (caused by the
off-axis magnetic well, which appears as a finite-beta effect).

W7-X (high beta)

1.25
1.2F|= up)
I A e V(p)/V'(0) N
' o BraPVBrg(0) ot
1.4} R
1.05¢ .uu"...

I
0.950 : .""~.;
0.9 = o
08 0.2 0.4 0.6 0.8 1

p

Hence, turbulent equipartition does not always lead to a cen-
tral density peaking in tokamak geometry, which contrasts
widespread belief.

In stellarators, the curvature pinch is rather weak. The
main reason for this is the large aspect ratio and negative
magnetic shear characterizing most stellarators. Neverthe-
less, the curvature pinch may play a role in stellarators, too.
A qualitative difference from tokamaks is that the curvature
pinch in most cases leads to hollow density profiles. This
may inhibit impurity accumulation in the core. Clearly, one
has to take into account also the neoclassical particle trans-
port of electrons, which is non-negligible in stellarators.

Note that the computation of the canonical density pro-
file (as the “quantity of reference” that has to be used in the
transport equations, see Ref. 10) is important in its own right.
We have limited ourselves to this effect only, leaving aside
the possible role of thermodiffusion. In tokamak geometry,

W7-X (high beta)

1.1

FIG. 10. (Color online) W7-X (finite-beta configuration, inverse aspect ratio €= 0.09). Curves as in Fig. 1.
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FIG. 11. (Color online) Peaking factor (7, —"min)/Mmax as @ function of
inverse aspect ratio, both tokamak and stellarator results. Note that a large-
aspect-ratio tokamak (inverse aspect ratio €=0.05) with circular unshifted
flux surfaces has been considered in addition to the cases described in the
text.

the relative importance of the thermodiffusion is a matter of
debate (see Refs. 3, 5, 10, and 13). In stellarators, the role of
thermodiffusion merits further study. It is of course possible
that it is more important than the curvature pinch, which, as
we have seen, is rather weak in most stellarators.

We have summarized our results in Figs. 11 and 12,
where the density-peaking factor, defined as the normalized
difference between the maximal and minimal values of the
canonical density, is plotted as a function of the inverse as-
pect ratio. One sees that the peaking in tokamaks increases

0-1 T I T I T I T I T
A
5 0.08 =
£
c i o 1
j\c 0.06 - —
E | o W7-X | -

? 0.04 - = W7'AS _
3 LHD
= | A NCSX | ]

~ o002} < <« WEGA | -
| @ ]
Y
8.05 0.1 0.15 0.2 0.25

Inverse aspect ratio

FIG. 12. (Color online) Peaking factor (1, —nyin)/Mmax @S @ function of
inverse aspect ratio, stellarator results. Note that for a classical /=2 stellar-
ator WEGA (Ref. 24), the LHD configurations with R,,=4.05 and 3.90 m,
low- and high-mirror W7-X configurations have been considered in addition
to the stellarators described in Sec. IV.
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with the inverse aspect ratio, whereas the peaking in stellara-
tors does not. In Fig. 12, one sees that the curvature pinch
leads to different density profiles in the same stellarator de-
vice, depending on the particular magnetic configuration
used. An interesting feature is the beta-dependence of the
curvature pinch strength and even its direction (both in toka-
maks and stellarators).

The curvature pinch appears because collisionless
trapped electrons experience anomalous transport through in-
teraction with electrostatic turbulence while maintaining
their second adiabatic invariant. This assumes that the char-
acteristic frequencies of the turbulence are much smaller than
the electron bounce frequency. Note that this condition can
be satisfied for fast ions, too, so that one may expect a fast-
ion curvature pinch in addition to any anomalous diffusion
that may arise from the interaction between the fast ions and
the turbulence fluctuations. This may be of importance in
view of recent numerical results®>> indicating finite levels
of anomalous fast-ion transport.

ACKNOWLEDGMENTS

We appreciate useful discussions with J. Niithrenberg, M.
Mikhailov, and N. Marushchenko. We acknowledge S. Kaye
for his help on NSTX.

'A. A. Ware, Phys. Rev. Lett. 25, 15 (1970).

’G. V. Pereverzev and P. N. Yushmanov, Sov. J. Plasma Phys. 6, 543
(1980).

R Miskane, X. Garbet, A. Dezairi, and D. Saifaoui, Phys. Plasmas 7, 4197
(2000).

“D. R. Baker, Phys. Plasmas 11, 992 (2004).

P W. Terry and R. Gatto, Phys. Plasmas 13, 062309 (2006).

°F, Wagner and U. Stroth, Plasma Phys. Controlled Fusion 35, 1321
(1993).

7. Nycander and V. V. Yankov, Phys. Plasmas 2, 2874 (1995).

M. B. Isichenko, A. V. Gruzinov, P. H. Diamond, and P. N. Yushmanov,
Phys. Plasmas 3, 1916 (1995).

°D. R. Baker and M. N. Rosenbluth, Phys. Plasmas 5, 2936 (1998).

10x. Garbet, N. Dubuit, E. Asp, Y. Sarazin, C. Bourdelle, P. Chendrin, and
G. H. Hoang, Phys. Plasmas 12, 082511 (2005).

K. Tanaka, C. Michael, M. Yokoyama, O. Yamagishi, K. Kawahata, and T.
Tokuzawa, Fusion Sci. Technol. 51, 97 (2007).

120, Yamagishi, M. Yokoyama, N. Nakajima, and K. Tanaka, Phys. Plasmas
14, 012505 (2007).

N. Dubuit, X. Garbet, T. Parisot, R. Guirlet, and C. Bourdelle, Phys.
Plasmas 14, 042301 (2007).

4R, Aymar, Fusion Eng. Des. 36, 9 (1997).

BA. Sykes, J.-W. Ahn, R. Akers, E. Arends, P. G. Carolan, G. F. Counsell,
S. J. Fielding, M. Gryaznevich, R. Martin, M. Price, C. Roach, V.
Shevchenko, M. Tournianski, M. Valovic, M. J. Walsh, and H. R. Wilson,
Phys. Plasmas 8, 2101 (2001).

g, Kaye, M. Ono, Y.-K. M. Peng, D. B. Batchelor, M. D. Carter, W. Choe,
and R. Goldston, Fusion Technol. 36, 16 (1999).

'"A. Reiman, G. Fu, S. Hirshman, L. Ku, D. Monticello, H. Mynick, M.
Redi, D. Spong, M. Zarnstorff, B. Blackwell et al., Plasma Phys. Con-
trolled Fusion 41, B273 (1999).

130, Motojima, N. Ohyabu, A. Komori, O. Kaneko, H. Yamada, K. Kawa-
hata, Y. Nakamura, K. Ida, T. Akiyama, N. Ashikawa et al., Nucl. Fusion
43, 1674 (2003).

19, Murakami, A. Wakasa, H. Maaberg, C. D. Beidler, H. Yamada, K. Y.
Watanabe, and LHD Experimental Group, Nucl. Fusion 42, L19 (2002).

G, Grieger, W. Lotz, P. Merkel, J. Nyhrenberg, J. Sapper, E. Strumberger,
H. Wobig, R. Burhenn, V. Erckmann, U. Gasparino, L. Giannone, H. J.
Hartfuss, R. Jaenicke, G. Kyhner, H. Ringler, A. Weller, and F. Wagner,
Phys. Fluids B 4, 2081 (1992).

21G. Grieger, C. D. Beidler, H. Maassberg, E. Harmeyer, F. Herrnegger, J.
Junker, J. Kisslinger, W. Lotz, P. Merkel, J. Nuehrenberg, F. Rau, J. Sap-



102308-10  Mishchenko, Helander, and Turkin

per, A. Schlueter, F. Sardei, and H. Wobig, in Proceedings of the 13th
International Conference on Plasma Physics and Controlled Nuclear Fu-
sion Research, Vol. 3 (International Atomic Energy Agency, Vienna,
1991), p. 525.

2T, Hauff and F. Jenko, Phys. Plasmas 13, 102309 (2006).

Phys. Plasmas 14, 102308 (2007)

3C. Estrada-Mila, J. Candy, and R. E. Waltz, Phys. Plasmas 13, 112303
(2006).

M. Otte, O. Lischtschenko, S. Marsen, M. Schubert, Y. Y. Podoba, F.
Wagner, G. B. Warr, L. I. Krupnik, A. V. Melnikov, and A. I. Zhezhera,
Stellarator News 106, 4 (2006).



